Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 978, 2023 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-36813768

RESUMO

Lymphatic malformation (LM) is a vascular anomaly originating from lymphatic endothelial cells (ECs). While it mostly remains a benign disease, a fraction of LM patients progresses to malignant lymphangiosarcoma (LAS). However, very little is known about underlying mechanisms regulating LM malignant transformation to LAS. Here, we investigate the role of autophagy in LAS development by generating EC-specific conditional knockout of an essential autophagy gene Rb1cc1/FIP200 in Tsc1iΔEC mouse model for human LAS. We find that Fip200 deletion blocked LM progression to LAS without affecting LM development. We further show that inhibiting autophagy by genetical ablation of FIP200, Atg5 or Atg7, significantly inhibited LAS tumor cell proliferation in vitro and tumorigenicity in vivo. Transcriptional profiling of autophagy-deficient tumor cells and additional mechanistic analysis determine that autophagy plays a role in regulating Osteopontin expression and its down-stream Jak/Stat3 signaling in tumor cell proliferation and tumorigenicity. Lastly, we show that specifically disrupting FIP200 canonical autophagy function by knocking-in FIP200-4A mutant allele in Tsc1iΔEC mice blocked LM progression to LAS. These results demonstrate a role for autophagy in LAS development, suggesting new strategies for preventing and treating LAS.


Assuntos
Linfangiossarcoma , Humanos , Camundongos , Animais , Proteínas Relacionadas à Autofagia , Células Endoteliais , Osteopontina , Autofagia/genética , Fator de Transcrição STAT3
2.
Cancers (Basel) ; 14(2)2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-35053617

RESUMO

It is a major challenge to treat metastasis due to the presence of heterogenous BCSCs. Therefore, it is important to identify new molecular targets and their underlying molecular mechanisms in various BCSCs to improve treatment of breast cancer metastasis. Here, we performed RNA sequencing on two distinct co-existing BCSC populations, ALDH+ and CD29hi CD61+ from PyMT mammary tumor cells and detected upregulation of biglycan (BGN) in these BCSCs. Genetic depletion of BGN reduced BCSC proportions and tumorsphere formation. Furthermore, BCSC associated aggressive traits such as migration and invasion were significantly reduced by depletion of BGN. Glycolytic and mitochondrial metabolic assays also revealed that BCSCs exhibited decreased metabolism upon loss of BGN. BCSCs showed decreased activation of the NFκB transcription factor, p65, and phospho-IκB levels upon BGN ablation, indicating regulation of NFκB pathway by BGN. To further support our data, we also characterized CD24-/CD44+ BCSCs from human luminal MCF-7 breast cancer cells. These CD24-/CD44+ BCSCs similarly exhibited reduced tumorigenic phenotypes, metabolism and attenuation of NFκB pathway after knockdown of BGN. Finally, loss of BGN in ALDH+ and CD29hi CD61+ BCSCs showed decreased metastatic potential, suggesting BGN serves as an important therapeutic target in BCSCs for treating metastasis of breast cancer.

3.
Sci Immunol ; 2(17)2017 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-29150439

RESUMO

Naïve T cells are poorly studied in cancer patients. We report that naïve T cells are prone to undergo apoptosis due to a selective loss of FAK family-interacting protein of 200 kDa (FIP200) in ovarian cancer patients and tumor-bearing mice. This results in poor antitumor immunity via autophagy deficiency, mitochondria overactivation, and high reactive oxygen species production in T cells. Mechanistically, loss of FIP200 disables the balance between proapoptotic and antiapoptotic Bcl-2 family members via enhanced argonaute 2 (Ago2) degradation, reduced Ago2 and microRNA1198-5p complex formation, less microRNA1198-5p maturation, and consequently abolished microRNA1198-5p-mediated repression on apoptotic gene Bak1 Bcl-2 overexpression and mitochondria complex I inhibition rescue T cell apoptosis and promoted tumor immunity. Tumor-derived lactate translationally inhibits FIP200 expression by down-regulating the nicotinamide adenine dinucleotide level while potentially up-regulating the inhibitory effect of adenylate-uridylate-rich elements within the 3' untranslated region of Fip200 mRNA. Thus, tumors metabolically target naïve T cells to evade immunity.


Assuntos
Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Ácido Láctico/farmacologia , Neoplasias Ovarianas/metabolismo , Proteínas Tirosina Quinases/metabolismo , Linfócitos T/efeitos dos fármacos , Animais , Apoptose/genética , Autofagia/genética , Proteínas Relacionadas à Autofagia , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Ácido Láctico/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Neoplasias Experimentais/genética , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Proteínas Tirosina Quinases/genética , Linfócitos T/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...